Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

An-Shu Wu, Xiang-Gao Li,* Li-Li He and Shi-Rong Wang

School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: wuanshujxys@126.com

Key indicators

Single-crystal X-ray study T = 294 KMean $\sigma(\text{C}-\text{C}) = 0.004 \text{ Å}$ R factor = 0.050 wR factor = 0.143 Data-to-parameter ratio = 17.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

4-(4,4-Diphenylbuta-1,3-dienyl)-*N*,*N*-bis(4-methyl-phenyl)aniline

The title compound, $C_{36}H_{31}N$, was synthesized by the Wittig reaction of 1,1-diphenyl-3-cholopropylene and 4-[N,N-bis(4-methylphenyl)amino]benzaldehyde. The butadiene structure has a planar transoid conformation.

Received 3 October 2005 Accepted 11 October 2005 Online 15 October 2005

Comment

Hole transporting materials (HTMs) play an important role in the fabrication of organic photoconductors (OPCs), which are widely used in xerography and holography (Wu *et al.*, 2005). Substances containing the butadiene structure have been widely investigated, because of their easy preparation by the Wittig reaction and favorable photographic performances when used as HTMs (Enokida & Hirohashi, 1991).

The title compound, (I), was synthesized by the Wittig reaction of 1,1-diphenyl-3-cholopropylene and 4-[*N*,*N*-bis(4-methylphenyl)]aminobenzaldehyde.

Fig. 1 shows the molecular structure of (I). The butadiene structure (C1/C14–C16) is almost planar to within 0.03 Å and

The molecular structure of (I), with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

organic papers

has a transoid conformation. The dihedral angles between the butadiene plane and the *A*, *B* and *C* ring planes are 53.0 (3), 40.3 (2) and 7.3 (2)°, respectively. On the other hand, the dihedral angles between the benzene rings, C/D = 64.3 (2)° and C/E = 64.4 (2)°, are essentially the same. The C1–C8 [1.477 (3) Å] and C1–C2 [1.489 (3) Å] bond distances are a little longer than C16–C17 [1.451 (3) Å], while the N1–C20 [1.410 (3) Å], N1–C23 [1.422 (3) Å] and N1–C30 [1.418 (3) Å] bond lengths are essentially the same.

Experimental

A mixture of 1,1-diphenyl-3-chloropropylene (11.4 g, 50 mmol), triethyl phosphite (18.0 ml, 50 mmol) and xylene (50 ml) was refluxed for 10 h, and then xylene was removed *in vacuo* to obtain a residue. After cooling, the residue, 4-[N,N-bis(4-methylphenyl)]aminobenzaldehyde (12.0 g, 40 mmol), dimethylformamide (100 ml) and potassium *tert*-butoxide (4.5 g, 40 mmol) were placed in a flask. The resulting mixture was stirred for 5 h and poured into methanol, and the resulting precipitate was separated from the liquid by filtration to obtain crude crystals. These were purified by silica gel column chromatography [eluant: toluene/ethyl acetate (2:1)], recrystallized from hexane and dried to obtain yellow crystals (yield 58.7%, m.p. 433 K).

Crystal data

$C_{36}H_{31}N$ $M_r = 477.62$ Orthorhombic, <i>Pbca</i> a = 16.629 (2) Å b = 14.9729 (19) Å c = 22.899 (3) Å V = 5701.3 (13) Å ³ Z = 8 $D_x = 1.113$ Mg m ⁻³	Mo K α radiation Cell parameters from 4038 reflections $\theta = 2.5-20.6^{\circ}$ $\mu = 0.06 \text{ mm}^{-1}$ T = 294 (2) K Block, yellow $0.24 \times 0.16 \times 0.14 \text{ mm}$
Data collection Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 1997) $T_{min} = 0.975, T_{max} = 0.991$ 30699 measured reflections	5830 independent reflections 2710 reflections with $I > 2\sigma(I)$ $R_{int} = 0.071$ $\theta_{max} = 26.4^{\circ}$ $h = -16 \rightarrow 20$ $k = -18 \rightarrow 18$ $l = -28 \rightarrow 25$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0558P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.050$	+ 0.4918P]
$wR(F^2) = 0.143$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.01	$(\Delta/\sigma)_{\rm max} = 0.005$
5830 reflections	$\Delta \rho_{\rm max} = 0.17 \ {\rm e} \ {\rm \AA}^{-3}$
336 parameters	$\Delta \rho_{\rm min} = -0.15 \text{ e} \text{ \AA}^{-3}$
H-atom parameters constrained	

H atoms were positioned geometrically [0.93 (CH) and 0.96 Å (CH₃)] and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C_{CH})$ and $1.5U_{eq}(C_{CH3})$.

Figure 2 Packing diagram of (I).

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

Financial support from the National High Technology Research and Development Program of China, through research grant No. 2002AA325050, is gratefully acknowledged.

References

- Bruker (1997). SADABS, SMART, SAINT and SHELXTL. Versions 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Enokida, T. & Hirohashi, R. (1991). J. Appl. Phys. 70, 6908-6912.

Sheldrick G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Wu, A.-S., Li, X.-G., Wang, S.-R. & Xue, J.-Q. (2005). Gongneng Cailiao, 36, 708–710. (In Chinese.)